A First Principles Theory of Generalization

Some new research from University of California, Berkeley shades some new light into how to quantify neural networks knowledge.

Jesus Rodriguez
3 min readNov 10, 2022
Generated by Midjourney

I recently started an AI-focused educational newsletter, that already has over 150,000 subscribers. TheSequence is a no-BS (meaning no hype, no news etc) ML-oriented newsletter that takes 5 minutes to read. The goal is to keep you up to date with machine learning projects, research papers and concepts. Please give it a try by subscribing below:

Most of machine learning(ML) papers we see these days are focused on advancing new techniques and methods in different areas such as natural language or computer vision. ML research is advancing at a frantic pace despite the lack of fundamental theory of machine intelligence. Some of the main questions in ML such as how to understand how neural networks learn or how to quantify knowledge generalization remain unanswered. From time to time, we come across papers that are challenging our fundamental understanding of ML theory with new…

--

--

Jesus Rodriguez
Jesus Rodriguez

Written by Jesus Rodriguez

CEO of IntoTheBlock, President of Faktory, President of NeuralFabric and founder of The Sequence , Lecturer at Columbia University, Wharton, Angel Investor...

No responses yet